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The Cognitive Revolution

Thomas M. Ward and Ozanan Meireles

�Introduction

In the last decade, we have been witnessing the 
great potential of a Cognitive Revolution in 
Medicine that promises to completely transform 
surgery. Before exploring its history and poten-
tial, we must establish some basic definitions. 
First, cognition is “the action or faculty of know-
ing” [1]. Cognition is fundamental, but formal 
study only started in the 1950s [2]. Recent prog-
ress in one of its major subfields, artificial intel-
ligence (AI), has created the promise of 
revolution.

A revolution is a “dramatic or wide-reaching 
change in conditions” [1]. Examples include the 
Industrial Revolution, which jump-started mod-
ern society with its transition of manual labor 
into machine-assisted processes. Surgery has 
also undergone many revolutions. In the nine-
teenth century, the development of general anes-
thesia and asepsis allowed for surgeons to 
humanely, and safely, foray into invasive surgical 
procedures. The twentieth-century innovations of 
surgical staplers, endoscopy, and laparoscopy 
have created modern surgery as we know it [3]. 

Despite this progress, surgery is still fraught with 
dangers: almost 30% of surgical patients will suf-
fer a complication [4]. Surgery needs to improve, 
and AI offers a potential solution: the Cognitive 
Revolution.

�Artificial Intelligence

AI is “the study of computations that make it pos-
sible to perceive, reason, and act” [5]. The breadth 
and extent of these computational abilities lead to 
different types of AI. Movies and popular science 
portray AI as computers and automatons with 
cognition equivalent to humans’. This all-
encompassing AI is termed generalized AI [6]. 
Taken to the extreme, some people even believe 
that AI will obtain superhuman intelligence and 
end humanity’s reign, with an event known as the 
singularity [7]. Despite Hollywood’s hyperboles, 
a more realistic and obtainable intelligence is a 
narrow one, where computer algorithms focus on 
specific tasks and excel. Narrow AI is pervasive 
throughout today’s society, from movie recom-
mendation systems to autonomous vehicles.

Narrow AI aligns closely to Warren McCulloch 
and Walter Pitts’ original conception of AI in 
1943. Based upon a knowledge of basic neuro-
physiology, propositional logic, and Turing’s the-
ory of computation, they proposed that any 
function could be computed with a network of 
neurons that were either on or off [8]. Minsky and 
Edmonds made this “neural network computer” a 
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reality in 1950 with their SNARC, a computer 
that simulated 40 neurons [9]. These neural net-
works led to initial great success in the 1950s, 
with an early prototype capable of winning games 
of Checkers [10]. Unfortunately, the early gains 
and lofty promises failed to deliver in the ensuing 
decades. Public and private sector opinion soured 
on AI, as epitomized by the Lighthill Report in 
1973 which led to almost total cessation of gov-
ernmental funding for AI in the United Kingdom 
[11]. The ensuing “AI Winter” brought with it a 
near total collapse of the AI industry in the 1980s 
and early 1990s [12]. As the 1990s progressed 
though, AI began to succeed, particularly with 
narrow tasks. Four decades after Samuel’s 
machine learning success with Checkers, IBM 
created “Deep Blue,” a chess computer capable of 
beating the World Chess Champion Garry 
Kasparov [13]. This landmark achievement was 
one of many to follow in the years ahead.

�Artificial Intelligence Revolution

AI in the twentieth century had been a plodding 
field, filled with many promises but few results. 
AI’s fortunes, though, have changed in the past 
two decades. AI, particularly narrow AI, is under-
going a resurgence and revolution  – but why 
now? Its success results from the alignment of 
four major factors: (1) big data, (2) adequate 
compute power, (3) deep learning algorithms, 
and (4) increased investment.

The first key to the AI revolution is big data. 
Data inputs form the foundation for AI and its 
subfield – machine learning (ML). Without data, 
the algorithms cannot learn. Early successes in 
ML came with application to problems that have 
a small, finite data space. For example, Tic-Tac-
Toe only has nine squares to fill with two possible 
markers (X or O), with only a thousand legal pos-
sible different positions. Checkers has over 1020 
possibilities, and the game Go has 10170 possibili-
ties [14, 15]. Mapping these possibilities is rela-
tively easy for a computer but imagine the amount 
of data needed for an algorithm to not just play a 
board game, but classify objects, understand 
human speech, or even operate a motor vehicle.

Prior to 2003, humanity had generated 5 exa-
bytes (5 ∗ 1018) of data. As of 2012, that much 
data was generated every 2 days [16]. Medicine 
has seen a similar explosion in data availability, 
with 1 minute of high-definition surgical video 
containing 25 times the amount of information in 
one CT scan image [17]. This glut of data has 
given AI and ML algorithms the information they 
need to learn and perform at human levels.

The second key to the AI revolution is ade-
quate compute power. AI and ML algorithms, 
particularly those of the “deep learning” variety, 
are extraordinarily resource intensive. Much of 
AI’s failure to launch in the mid-to-late twentieth 
century stemmed from lack of compute power. 
As Moore famously postulated in 1975, com-
puter circuits have doubled in circuit complexity 
every 2 years, which roughly translates to a dou-
bling in compute power [18]. Even this doubling 
of compute power failed to reach adequate levels 
for some of the newer ML algorithms found with 
“deep learning” which require millions of com-
plex linear algebra calculations. The relatively 
recent employment of graphical processing units 
(GPUs) made these algorithms’ utilization feasi-
ble. GPUs are special computer chips initially 
developed for computer graphical tasks, such as 
video games. For ML tasks, they perform calcu-
lations orders of magnitude faster than traditional 
computer chips [19]. Companies, such as Google, 
have expanded upon this idea with their creation 
of ML-specific chips like tensor processing units 
which run with improved energy costs and speed 
[20]. This additional computer “horsepower” has 
allowed for actual implementations of all the 
algorithms that AI’s inventors could heretofore 
only imagine.

The third key to the AI revolution is deep 
learning algorithms. AI’s inception started with 
the theory that computer networks could mirror a 
human’s own neural networks to create intelli-
gence. Relatively simple tasks with totally know-
able data (such as a Checkers game) were quickly 
implemented [10]. However, complex tasks that 
many would define as a marker of true intelli-
gence, such as image and speech recognition, 
escaped AI designers. Krizhevsky et  al. created 
the breakthrough with their application of deep 
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convolutional neural networks. They realized that 
the natural resources for AI, big data, and com-
pute power finally were bountiful. To tackle com-
plex tasks like image recognition, however, 
required development of a neural architecture – 
like the human brain, complex enough to use a 
limited set of training data to extrapolate recogni-
tion to all permutations. Their use of deep convo-
lutional neural networks halved the error rate for 
image recognition compared to all other competi-
tors [21]. These deep learning algorithms have 
become the primary approach to create intelli-
gence and cognition at levels that meet or exceed 
a human’s capabilities, from image recognition 
(with computer vision [CV]) to language (natural 
language processing [NLP]) [22].

The fourth key to the AI revolution is the 
increased investment that has accompanied the 
previous foundation. No longer is AI trapped in 
the unfundable “AI Winter” where private and 
public sector funding disappeared [12]. The US 
government invested $1.1 billion towards AI in 
2015 alone [23]. The private sector has seen a 
similar increase, with a doubling in AI private 
equity investment from 2016 to 2017. In fact, 
12% of worldwide private equity investment 
went to the AI industry in 2018 alone [24]. 
Healthcare, in particular, is seeing an order-of-
magnitude increase in funding, from $600 mil-
lion in 2014 to a projected $6.6 billion by 2021 
[25]. Big data, adequate compute power, deep 
learning algorithms, and increased investment 
have generated the rich AI landscape of today.

�AI in Healthcare

The AI revolution has led to an explosion of 
healthcare-related applications. The foundations 
of AI in healthcare rest upon the deep learning 
algorithm’s ability, through CV and NLP, to emu-
late humans’ cognitive capabilities. In the surgi-
cal arena, it mainly has served to augment, rather 
than supplant, the human element. Successful AI 
utilization is found in all phases of the surgery, 
from preoperative diagnosis and risk assessment 
to intraoperative assistance and postoperative 
complication prediction.

The preoperative phase has seen the largest 
application of AI technology. AI algorithms can 
go head-to-head with physicians – particularly in 
the image-predominant fields of radiology and 
pathology for preoperative diagnosis. Some 
examples of applications include diagnosis of 
intracranial hemorrhage from CT images, breast 
cancer from mammography, and lung cancer 
from tissue slides [26]. One exceptional example 
comes from work in dermatology. Esteva et  al. 
developed a diagnostic system based on convolu-
tional neural networks capable of classifying der-
matologic lesions as malignant or benign with 
superior sensitivity and specificity when com-
pared to board-certified dermatologists [27]. AI 
has also helped with preoperative patient risk 
stratification. One example includes the POTTER 
score, an algorithm based on the ML technology 
of optimal classification trees that outperformed 
traditional multivariable logistic regression 
model surgical risk calculators, such as the ACS-
NSQIP calculator [28].

The postoperative phase has also begun to see 
the introduction of AI technology. The majority 
of efforts have focused on complication predic-
tion, as previous works have identified the con-
cept of “failure to rescue,” where overall 
complication rates between high- and low-
performing hospitals are identical, but the lower-
performing hospital have twice the mortality 
rates. These efforts hope to, through integration 
of myriad variables, detect complications early 
and therefore prevent a snowball effect that ulti-
mately leads to higher mortality rates – which, in 
the case of pancreatic cancer, is over an order of 
magnitude higher [29, 30]. For example, one 
model considers over 175,000 data points per 
patient to predict mortality and morbidity [31]. 
Similar efforts aimed to predict postoperative 
surgical site infections from pre- and postopera-
tive laboratory values [32].

Despite the development of AI technology for 
the pre- and postoperative phases, there has been 
relatively fewer applications to the intraoperative 
phase. A few computer vision groups focus on 
temporal segmentation of laparoscopic 
intraoperative videos with analysis of cholecys-
tectomies, sleeve gastrectomies, and colectomies 
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[33–35]. One other group has worked to link 
intraoperative performance metrics from robotic 
surgery to predict postoperative events. For 
example, investigators could predict, based on 
intraoperative metrics alone, if a patient’s length 
of stay postoperatively would exceed 2 days [36]. 
The past 7 years have generated significant prog-
ress for AI in healthcare, but there continues to 
remain numerous unexplored avenues for further 
applications.

�Future Applications for AI 
in Surgery

The previously described AI innovations in 
healthcare are technologically revolutionary. The 
seemingly impossible tasks of image, speech, 
and language classification are now obtainable, at 
least at a rudimentary level. However, with 
respect to patient care, the advancements hardly 
seem to warrant the label of a “Cognitive 
Revolution.” Fortunately, with the ever-increasing 
amount of generated data, more powerful com-
puters, improved algorithms, and influx of funds, 
AI in healthcare is primed for a revolution.

This revolution will progress in incremental 
steps. Decision-support systems will become 
more pervasive at every stage of a patient’s care. 
Consider a patient referred with a diagnosis of 
colon cancer. In the next few years, the patient’s 
initial visit will seem relatively similar to the one 
from today, but it will incorporate ML algorithms 
throughout to augment their care. For example, 
an algorithm will classify their tumor at a granu-
larity far superior to our currently crude TNM 
staging system to create an individualized treat-
ment plan. Additionally, their metrics, including 
history, vitals, lab values, and imaging, will com-
bine to form a comprehensive risk assessment. 
Initially, the risk assessment will help determine 
surgical readiness. However, in the coming years, 
it will evolve so that it is capable of providing 
recommendations for appropriate “pre-
habilitation” to optimize the patient for surgery.

Intraoperative decision support will also start 
to slowly pervade the operating room. It will 
likely start with simple guidance, for example, to 
optimize laparoscopic port placement or help 
correlate preoperative imaging (such as tumor 
and major vasculature locations) with intraopera-
tive displays. Work with temporal-phase segmen-
tation will continue to build and begin to provide 
true operative guidance. Early implementations 
may offer a simple traffic light system, with a 
“green light” when dissection is going well, a 
“yellow light” when the surgeon is off course 
from a typical operation, and a “red light” when 
they are about to injure a vital structure. It will 
also offer a “phone-a-friend” functionality to 
connect to consultants for assistance. With con-
tinued development, this technology will ulti-
mately develop into an intraoperative “GPS,” 
guiding a surgeon through an operation 
step-by-step.

Postoperative decision support will include 
early warning systems to flag surgeons that a 
patient may have a certain complication. In the 
near future, integration of postoperative patient 
metrics with intraoperative video findings may 
lead to enhanced prediction that will predict not 
only that a complication may occur, but exactly 
the complication that will occur. Since these 
technologies will incorporate data from across 
hospitals and even countries, their fund of knowl-
edge will far exceed that of any surgeon and cre-
ate a unified “collective surgical consciousness” 
that will provide the optimal care.

Outside of decision-support systems, automa-
tion with underlying AI technology will also start 
to be incorporated into the operating room. It will 
start with automation of small tasks. For exam-
ple, after recommending laparoscopic port place-
ments, the machine may be able to dock a 
robotic-assisted surgery platform independently. 
Other small tasks may include fascial closure or 
anastomoses. Already, the Smart Tissue 
Autonomous Robot (STAR) can perform linear 
suturing and even autonomous sutured bowel 
anastomoses. In fact, its anastomoses can resist 
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double the leak pressure compared to a human-
sutured bowel anastomosis [37, 38]. In the com-
ing years, the surgeon will perform the majority 
of the dissection, prepare the bowel, and then just 
press a “bowel anastomosis” button for a picture-
perfect anastomosis constructed with optimal 
tension and precise bite-size throughout. In the 
more distant future, these incremental autono-
mous steps will combine until perhaps fully 
autonomous surgery is realized.

�Challenges

AI promises a Cognitive Revolution, but with this 
revolution will come numerous hurdles and chal-
lenges. Without careful treatment, AI’s progress 
may again derail, as it did in the 1980s, for a sec-
ond coming of the AI Winter.

�Ethics

AI and ML technologies present multiple ethical 
dilemmas. First is the issue of the “moral 
machine.” The original “moral machine” prob-
lem asked a variety of questions to people across 
the world about autonomous driving scenarios, 
such as whether an autonomous vehicle should 
hit pedestrians to save the vehicle’s passengers or 
swerve to avoid the pedestrian, thereby striking a 
barrier and killing the car’s occupants. Answers 
depended on the scenario. For example, partici-
pants were more likely to favor saving the vehi-
cle’s occupants if they were younger than the 
pedestrian, or if the pedestrian was illegally 
crossing the street. Interestingly, answers varied 
greatly across different world regions [39]. 
Similar scenarios could arise as AI becomes per-
vasive in medicine. For example, will decision-
support algorithms recommend against surgery 
for certain patients based upon their potential 
future societal contributions  – or favor more 
aggressive treatment to wealthier patients? AI 
model designers will need to provide algorithmic 

customization based on the locale’s cultural 
norms and regularly work with communities to 
provide ethically acceptable decisions.

A second ethical dilemma arises in the bias 
inherent to many AI algorithms. A recent analysis 
found one commercial prediction algorithm sig-
nificantly under-triaged black patients compared 
to white patients due to use of healthcare costs as 
a surrogate for a patient’s medical complexity. 
Since black patients had less access to more 
expensive treatment, their less-expensive care tri-
aged them to an incorrect healthier risk strata 
[40]. Training datasets need meticulous curation 
for fair representation of all patients; otherwise, 
algorithms unfairly trained may augment already 
present disparities [41].

A third ethical dilemma comes from the train-
ing process for these models. ML model training 
is incredibly energy intensive, requiring powerful 
computers with hours to days of training time 
over multiple iterations before adequate model 
performance achievement. Since 2012, the 
amount of compute power used to train models 
has increased by 300,000-fold [42]. Training one 
model generates almost 80,000 pounds of carbon 
dioxide, which surpasses double the amount an 
average American produces annually [43]. 
Development of these models must be done in an 
ordered and thoughtful fashion to minimize envi-
ronmental repercussions.

�Privacy

AI and ML require big data, but big data raises 
numerous privacy issues. “De-identified” data 
should be anonymous; however, true “de-
identification” is difficult, if not impossible. One 
researcher could link over 40% of newspaper sto-
ries regarding hospital admissions to “anony-
mized” public databases for hospital stays in the 
state of Washington [44]. In fact, based off gen-
der, postal zip code, and date of birth (common 
information in “de-identified” datasets), 87% of 
United States’ citizens are uniquely identified 
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[45]. Beyond issues with anonymity, many ML 
algorithms can make inferences about a patient to 
fill in missing data. As an example, some can 
infer smoking status (even if it is unknown) to 
help predict lung cancer risk. Future algorithms 
may be able to infer more sensitive information, 
such as HIV status, that the patient may not want 
known [46]. Other issues include ownership of 
data and patients’ rights to withdraw their data 
and consent. Laws such as the European General 
Data Protection Regulation (GDPR) aim to pro-
tect the data rights of subjects. Concerted effort 
must be made to protect patients’ privacy. One 
such solution may lie in split learning, where 
neural networks train across multiple data sources 
at different locations to prevent information leak 
from a central source [47].

�Policy

To safely go forth and tackle the above issues, 
governmental and societal organizations must 
create sound policy. AI and ML algorithms con-
tinually “learn” and update, so regulatory agency 
approval and guarantee of safety may no longer 
apply after future training iterations. From a US 
perspective, the Food and Drug Administration 
(FDA) made a push in the early 2000s to classify 
software (smart phone application, stand-alone 
software, cloud-based solution) as a medical 
device. Congress then passed the 21st Century 
Cures Act as a response after software lobbying 
to remove many instances of software from the 
medical device list. Unfortunately, the Cures Act 
left a significant loophole for clinical decision 
support software, allowing it to be unregulated as 
long as it intends to explain to physicians its rea-
soning, even if this explanation is unsuccessful 
[48]. On the wings of this relative deregulation, 
the FDA has been approving increasing numbers 
of AI-related technologies and devices, from 
smart watches that can detect atrial fibrillation to 
algorithms that diagnose diabetic retinopathy 
[26]. Thus far, however, only “locked” algorithms 
(ones that will always return the same answer for 
a certain input) have been approved. The FDA 
recognized two main issues: first, the loophole 

and, second, the need for a framework that 
addressed evolving algorithms. As a response, 
they are working on a new regulatory framework 
[49]. As we march towards our AI future, con-
certed efforts, at the corporate, governmental, 
and societal level, must occur to ensure we pro-
ceed safely while still maximally benefiting from 
the new technology.

�Annotations

The majority of the aforementioned algorithms 
represent supervised learning, where machines 
effectively learn from human-labeled examples. 
To teach a model surgical intraoperative phases, a 
surgeon will watch a video and label each phase, 
and then the algorithm will be given both the 
labels and the video and learn what constitutes 
each phase. Learning requires immense amounts 
of data and a commensurate amount of labelling 
time. Other areas solved this labelling problem 
through outsourcing, such as the “reCAPTCHA” 
tests seen online to ascertain whether a user is a 
human or computer. Ahn et al. used the reCAPT-
CHA tests to have regular Internet users tran-
scribe over 440 million words from ancient texts 
with 99% accuracy [50]. Unfortunately for 
healthcare, the data is too complex for labelling 
by untrained annotators, so our annotation capa-
bilities are severely limited by the relatively few 
expert annotators.

To solve the labor requirement, recent efforts 
have looked at streamlining the process. One 
group looked at pretraining models with unla-
beled data to hopefully reduce the amount of 
required labelled data for accurate model training 
[51]. Others used a clever trick: they trained the 
model on a small number of videos and then used 
the model to auto-annotate further videos, achiev-
ing similar accuracy to models trained with four 
times the amount of data [52]. Future efforts will 
hopefully continue this “auto-annotation” pro-
cess. The ML model’s strength and ability to 
truly revolutionize surgery will require it to 
obtain superhuman knowledge and capabilities. 
Training with thousands to ultimately millions of 
videos from across the world will give it the col-
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lective experience of countless surgeons. A rare 
example seen in rural Canada could then prevent 
a complication the next day on the opposite side 
of the globe. The sum of surgical experience will 
create a collective surgical consciousness greater 
than its individual parts.

�Surgical Training

The Cognitive Revolution that AI promises will 
require a different workforce in the future. Fewer 
physicians will be needed, particularly in fields 
that decision-support systems are well-suited to 
replacing (such as radiology and pathology). 
Automation will remove the need for physicians 
to do more quotidian tasks. Instead, the physician 
of the future will need more training in probabil-
ity and statistical learning to accurately interpret 
algorithms that will assist their care. They will 
also need increased exposure to ethics to help 
morally apply these recommendations and com-
puter science to understand the machinations 
providing them with daily assistance.

AI also promises to revolutionize surgical cre-
dentialing. The current process of regular written 
examinations fails to test actual surgical skills. 
With intraoperative ML models, surgeons in the 
future will be able to submit videos for recertifi-
cation. If the video falls within a level of accept-
able practice, they will then successfully recertify 
(of course, provided they also demonstrate apti-
tude in the management and care of the surgical 
patient). Similarly, when new procedures and 
technologies are introduced into surgical prac-
tice, the certification process will start first with 
intraoperative GPS guidance to train the surgeon, 
followed by automated video assessment to cer-
tify practice-ready performance.

�Conclusion

We are at the start of the Cognitive Revolution 
driven by advancements in AI. The combination 
of big data, improved compute power, deep learn-
ing algorithms, and increased investment has led 
to an explosion in AI innovation and applications. 

Despite less than 10 years of innovation, AI mod-
els are matching, and often exceeding, human 
performance across all phases of patient care. 
This explosion brings with it numerous chal-
lenges, ranging from ethical dilemmas to privacy 
issues, which will require thoughtful and mea-
sured policies. The power of a collective surgical 
consciousness promises an exciting future and, 
more importantly, a safer future for patients.
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