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Key points

e Artificial intelligence (Al) as a term has been used indiscriminately by marketers
and media, and surgeons should approach usage of the term with healthy
skepticism.

e All current forms of Al in surgery are narrow Al, that is, tools designed for use in
specific tasks under specific circumstances.

* Three major forms of machine learning are supervised learning, unsupervised
learning, and reinforcement learning.

INTRODUCTION
Artificial intelligence (Al) is loosely defined as the study of algorithms that give
machines the ability to reason and perform cognitive functions [1]. Although
often considered by the wider public to be a field firmly held in the domain
of computer science, Al is a field with wide roots ranging from mathematics
to statistics to computer science to philosophy to psychology to neurobiology
and to linguistics.

The popular conception of Al as represented in film and television is that of
a machine capable of mimicking human behavior or intellect—Hal 9000 from
2001: A Space Odyssey, the Terminator, or J.LAR.V.LS. and Vision from The
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Avengers movies. These are fictionalized portrayals of artificial general (also
known as strong) intelligence—AlI that is capable of tackling any task. In reality,
the Al algorithms under development or in use at the moment fall under the
category of narrow, or weak, intelligence, that is, Al that is capable of accom-
plishing very specific tasks.

Highlighting the specific nature of these algorithms, the Food and Drug
Administration (FDA) approved the first diagnostic utilization of an Al algo-
rithm in 2018—a program that assists in screening for diabetic retinopathy
through automated analysis of images of the fundus [2]. The list of FDA-
approved algorithms continues to grow with approved applications in radi-
ology and cardiology and pathology as well. With ongoing development and
application of Al technologies in medicine, it is important for clinicians in every
field to understand what these technologies are and how they can be leveraged
to deliver safer, more efficient, and more cost-effective care. Furthermore, it is
important to keep in mind what these technologies are not and to understand
the limitations inherent to any tool.

TECHNIQUES IN ARTIFICIAL INTELLIGENCE

The current utilization of the term, Al, has grown unwieldy, particularly
when used by marketing departments and the media. Often, Al is used in
place of more specific terms, such as machine learning (ML) or deep learning.
Thus, to provide an example of a taxonomy of how Al relates to more specific
terms, Al can be considered a larger parent field that encompasses subfields
like ML, which further encompasses techniques like neural networks and
deep learning. Fig. 1 demonstrates a conceptualization of a taxonomy of Al
to assist in understanding how some of these topics relate to one another.
These subfields and others are quite inter-related, and techniques from one
may be subsumed or used in concert with another, depending on the
application.

Supervised
Learning

Unsupervised
Learning

Deep Learning

Reinforcement
Learning

Fig. 1. Relationship of terminology in Al used in this article.
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Delving into the details behind each of the various subfields of Al is impor-
tant for an in-depth understanding of the field; however, for the curious sur-
geon, an overview of the major techniques utilized in surgical applications of
AT should suffice as an introduction to work in the field.

Machine Learning

ML refers to the study of algorithms and statistical models that enable ma-
chines to learn and perform tasks. ML algorithms utilize features, or proper-
ties within the data, to perform tasks without explicit programming. These
tasks traditionally are divided into those that require classification (ie,
dividing data into classes) and those that require regression (ie, modeling
the relationship between continuous variables). In classic ML, the features
are selected or hand-crafted by humans to guide the algorithms in evaluating
specific components within the data during its analysis. This is in contrast
to neural networks (described later), where features are extracted
automatically.

Within ML, the 2 most common learning types are supervised and unsuper-
vised learning. Supervised learning is a task-driven process wherein an algo-
rithm is trained to predict a prespecified output, such as identifying a stop
sign or recognizing a cat in a photograph. The “supervised” moniker comes
from the need to provide annotated (ie, labeled) data so that it can learn the
associations between inputs and the desired output. Thus, data sets are divided
into a training set (with labels provided) for learning and a test set (no labels
provided) that allows for the assessment of the performance of the algorithm
on new data [3,4].

Unlike supervised learning, unsupervised learning does not utilize a prespe-
cified annotation; rather, it draws inferences from unlabeled data to identify
patterns and/or structure within a data set. This type of learning can be useful
in identifying relationships between groups (eg, clustering) for further hypoth-
esis generation. This can be applied to typical, discrete surgical data, such as
patient outcomes databases, or to more unique data sets, such as surgical mo-
tion and activity. For example, unsupervised learning has been used to identify
high-risk cardiac surgery patients and to automatically identify suturing motion
in surgical video [5,6].

A third category of learning is reinforcement learning, a form of unsuper-
vised learning. It is analogous to operant conditioning, where learning occurs
through successive attempts via trial and error and rewards/punishments guide
the behavior of the model to optimize rewards [3,7].

Perhaps the most famous example of reinforcement learning comes from the
Google AlphaGoZero, a reinforcement learning algorithm initially designed to
play Go. Unlike prior computer systems designed to play games where the ma-
chine was taught a series of moves or was fed past examples of moves played
by master players, AlphaGoZero was given only the rules and learned from
self-play, becoming one of the top players in the world in 24 hours [8]. Com-
puter mastery of Go, without the input of human knowledge, was previously
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thought to be a near-impossible task because of the incredibly large number of
move combinations possible (googolplex, or 104710,

Despite this impressive feat, expectations must be tempered for the applica-
tion of such technology in surgery. Although games can be complex, they are
defined by well-understood rules that can be navigated efficiently by algo-
rithms. In contrast, medicine often is defined by uncertainty, and data contain
much more noise than signal. Often many features are required to appropri-
ately model a medical phenomenon, increasing the dimensionality of a problem
and the difficulty of accurately modeling the phenomenon itself.

Because no model describes medical phenomena perfectly, there must be
awareness of potential methodological pitfalls, such as overfitting of data. Over-
fitting describes a model that fits the data on which it was trained too closely,
resulting in predictions that are very high but do not generalize well to outside
data sets. In other words, the model memorizes the training data set itself
instead of modeling the phenomenon. Thus, in addition to testing performance
of a model on a test data set split from the original training data, it is preferable
to have an independent data set on which to validate model performance and
assess its generalizability.

Neural networks

In classic ML, features (ie, variables) are selected (also known as hand-crafted
or hand-engineered) by a person to optimize performance at a given task. For
example, hand-crafted features in a task to detect a cat could include whiskers
and pointy ears. Neural networks, inspired by biological nervous systems, pro-
cess data in layers of simple computational units that are intended to be anal-
ogous to neurons (Fig. 2). Thus, unlike in classic ML, neural networks can

Input Layer Hidden Layer Output Layer

Fig. 2. lllustrative example of a 3-layer neural network consisting of an input layer, a hidden
layer, and an output layer.
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extract features from data and use them as mputs, adjusting the weights of
those features accordingly to be used within an activation function to yield
some output [9]. That is, the system automatically, using predetermined math-
ematical functions, tweaks weights to strengthen/weaken connections within
the network to yield the best possible results.

Deep neural networks

Deep neural networks are, effectively, neural networks with more than 3
layers, allowing for learning of more complex patterns than those that are
discernible from simple 1-layer or 2-layer networks. As with nondeep neural
networks, deep learning selects features that are most likely to yield best re-
sults. This technique works particularly well with unstructured data, such
as audio, images, and video [10]. Generally, each layer of a deep neural
network performs a set of operations to generate a representation of the
data that then is fed feeds to the next layer. With each layer of the network,
the representation of the data becomes more abstract, although with
increasing ability to distinguish different data classes [11]. The most common
architectures in deep learning that are currently used for surgical applications
are convolutional neural networks, recurrent neural networks, and residual
neural networks.

APPLICATIVE FIELDS OF ARTIFICIAL INTELLIGENCE

The techniques, described previously, have been used to great effect within
several applicative subfields of Al. Two of the most common in medicine
(and in surgery more specifically) are the fields of computer vision (CV) and
natural language processing (NLP).

Computer vision

CV is, in its simplest explanation, machine understanding of images and videos
[3]. It is a subfield of Al but also composed of other fields like signal processing,
pattern recognition, and image processing (Fig. 3—although CV does not sub-
sume reinforcement learning, this merely represents overlap in fields). It in-
volves a machine integrating information from the pixels that make up an
image, detecting objects within an image, and potentially even engaging in anal-
ysis of open spaces within an image. These elements together can result in
advanced applications, such as an autonomous driving system, where the com-
puter is able to identify open roads, pedestrians, traffic lights, and so forth. GV
also has benefited greatly from deep learning techniques.

Most of the readily recognizable advances in GV have come from the fields
of radiology and pathology, perhaps due to the readily available nature of dig-
ital images in both fields. GV also has demonstrated promise with screening
applications in ophthalmology, such as through the automated detection of dia-
betic retinopathy, and dermatology, where automated recognition of benign
versus malignant skin lesions has been described [12,13]. Outside of specific
clinical areas, CV and deep learning have been used together to create tools
to predict radiation and magnetic exposure to staff in procedures where
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Supervised

Fig. 3. Relationship of CV as a field to topics within Al. For illustration purposes, CV appears
to subsume reinforcement learning but in reality reinforcement learning is one technique within
and outside of CV as a field.

computed tomography, fluoroscopy, or magnetic resonance imaging may be
used and combine such predictions with augmented reality, to provide feed-
back to the staff [14].

GV applications in surgery are increasing, however, as access to visual sur-
gical data increases. With greater, cheaper storage capacities and more user-
friendly laparoscopic, endoscopic, and robotic camera systems, many surgeons
are choosing to record their operations for teaching, education, and research
purposes. These applications are described later.

Natural language processing

NLP focuses on machine understanding of human language beyond identifi-
cation of vocabulary (synonyms, antonyms, definitions, and so forth).
Without NLP, computers are limited to reading machine languages or code
(eg, G+, Java, and Visual Basic) to execute instructions based on explicitly
programmed code that are compiled to yield an output. NLP allows machines
to approximate the understanding of human language as it would be used in
day-to-day life. It strives to achieve understanding of syntax and semantics to
approximate meaning from phrases, sentences, or paragraphs [15].

NLP is perhaps most readily recognized in home assistant devices, such as
Amazon Alexa (Amazon, Seattle, Washington) or Google Home (Alphabet,
Mountain View, California). Analogous functions are found in digital plat-
forms used for operative dictation (eg, Dragon software [Nuance, Burlington,
Massachusetts]) Beyond the provider-facing functions, such as dictation, NLP
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1s utilized heavily in the analysis and utilization of data within the electronic
medical record. Because NLP can be used to analyze some forms of human
language, unstructured free text, such as radiology reports, progress reports,
and operative notes, can be analyzed and structured in an automated manner.
As examples, it can be utilized to assess for sentiment in patient notes for the
prediction of patient health status, to analyze records for risk prediction in
cancer patients, and to detect surgical site infection from providers’ notes
[16-18].

SPECIFIC APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN
SURGERY

Preoperative risk prediction

Surgery 1s a controlled insult on the human physiology that is not without
risks: 20% of surgeries have complications [19]. Therefore, prior to an opera-
tion, surgeons and patients have always asked, “What are the risks associated
with this operation?” Ideally, risk prediction would both guide patient-centered
decisions to evaluate both operative candidacy and predict possible postopera-
tive complications.

Many risk calculators and decision algorithms exist on the market. Because
adequate cardiac function is of utmost importance, the most prominent calcu-
lators assess and predict risk of major adverse cardiac events (MACE). Exam-
ples include the Revised Cardiac Risk Index (RCRI) and Gupta Perioperative
Risk for Myocardial Infarction or Cardiac Arrest (MICA) [19-21]. Unfortu-
nately, these models often underperform. The POISE trials showed a
MACE rate of 6.9% in patients rather than the RCRI-predicted rate of 1%
to 2.4% [22]. Outside of risk calculators, subjective patient-reported measures
of cardiac functional capacity, such as metabolic equivalents, also tend to
under-triage patients. One study found that subjects report their cardiac capac-
ity, with a sensitivity of only 19% [23].

Other risk calculators incorporate more than cardiac factors alone to try to
predict risk. Most famously, the American Society of Anesthesiologists (ASA)
have created a classification system to predict risk [24]. Just like metabolic
equivalents, however, the score has built-in subjectiveness, which leads to
classification variability. For example, a survey of board-certified anesthesiol-
ogists found widespread variability in classification for more than a third of
patients [25].

More recent efforts have attempted to solve the prior predictors’ shortcom-
ings through the use of objective big data to address model underperformance.
For example, the American College of Surgeons National Surgical Quality
Improvement Program (AGS-NSQIP) released a risk calculator. Their calcu-
lator used information from 393 hospitals with approximately 1.5 million pa-
tients to create a generalized linear mixed model to predict risk of mortality
and various complications. This model had good performance, with C statistics
of 0.944 and 0.816 for mortality and morbidity, respectively [26].
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Until recently, a majority of risk calculators have used traditional linear and
additive models for risk prediction. Recent advances utilize ML methods for
better approximation of the nonlinearity of patient risk factors. Researchers
at Duke University trialed 3 different ML methods on their single-institution
database of 100,000 patients: least absolute shrinkage and selection operator
(lasso) penalized logistic regression, random forest models, and extreme
gradient boosted trees [27]. Comparing the 3 methods, they found that lasso
performed best for more than 8 of 14 outcomes whereas extreme gradient
boosted trees excelled in 5 of 14 outcomes with areas under the curve ranging
from 0.747 to 0.924. With their algorithms, they created an online calculator
with 9 mput data fields that out-performed the ACS-NSQIP calculator in post-
operative mortality and morbidity prediction across-the-board for a random
sample of 75 patients.

Similar work has come out of the University of Florida with their MySurger-
yRisk score. They used their electronic medical record (EMR) data to create
risk-prediction scores using ML techniques, such as random forests. Their
risk-prediction was particularly patient-tailored because they linked training
data to census data tied to zip codes and to surgeon-specific outcomes. Beyond
just the creation of a risk-calculator, they also created interfaces for seamless
EMR integration, not only so that risk-prediction happened in real time but
also their models underwent continuous learning and tuning from physician-
feedback [28].

With all these advances, the elephant-in-the-room question, “Do these scores
actually improve upon current standards?” remains. A group from the Massa-
chusetts General Hospital created another risk prediction calculator called Pre-
dictive OpTimal Trees in Emergency Surgery Risk (POTTER). They used the
ML technique of optimal classification trees trained on 7 years of ACS-NSQIP
data, which they packaged in a smartphone application for ease of use and
deployment. Unlike the other scores, discussed previously, they compared
their technique to multiple scores, including the ASA’s and ACS-NSQIP,
with superior performance across an entire year of patients from the ACS-
NSQIP database [29].

Preoperative risk calculation has evolved over the past decades. Medical prac-
titioners no longer are limited to relying on tried-and-true but subjective methods
like clinical gestalt or classifications and instead can combine the ever-increasing
big data from EMR with ML algorithms for objective, and increasingly accurate,
predictions of patient outcomes. With continuous EMR integration and even
deployment to smartphones, this wealth of information is immediately available
and creates the promise that 1 day, patients may be able to be exactly answered
when they ask, “What are the risks of this surgery?”

Intraoperative video analysis

Al technology has advanced significantly for the preoperative phase, but there
have been few forays into intraoperative Al deployment. Al, through CV, al-
lows computers to comprehend visual cues and, therefore, interact with the
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world in real time. With sufficient training and incorporation of thousands of
operations, an Al model could guide surgeons, in real time, just as if they had a
world expert in surgery looking over their shoulder. It already is known that
experience matters, with an inverse relationship between a surgeons’ case vol-
umes and their patients’ mortality [30]. Analysis of a surgeon’s ability on visual
cues alone is even predictive of a surgeon’s rate of complications [31]. If a CV
system could guide surgeons and take their performance from the bottom quar-
tile to the top quartile, patients would receive immediate improvement in their
care. Although it is known that skill does contribute to performance differences,
approximately 70% of cases have near-miss events, two thirds of which need
additional itervention to fix, which is something a GV model could warn
the operator about and prevent from happening in the first place [32].

With the promise of a safer operating room, a few groups across the world
have tried to tackle the difficult problem of teaching a computer to see and
think like a high-level surgeon. GV is still quite new, with accurate image recog-
nition possible only since 2012, so applications of CV in surgery are nascent
[32,33]. The initial work has involved analysis of laparoscopic cases, given
the ease of video acquisition and camera stability. In particular, groups have
worked on identification of surgical phase with good accuracy across cholecys-
tectomy (86.7%), sleeve gastrectomy (85.6%), and sigmoidectomy (91.9%) [34—
36]. Additional applications of such technology have been investigated for its
potential impact on improving operating room workflow and logistics, such
as through the prediction of remaining operative time from intraoperative
video alone [37].

Knowing that accurate phase recognition is possible, next steps will include
development of intraoperative decision support. For example, likely applications
include guidance for port placement, confirmation that a critical portion of the
case has successfully been obtained (eg, the critical view of safety in cholecystec-
tomy), and, in the more distant future, maybe even a real-time intraoperative
global positioning system to guide surgeons in their dissection. As the Al models
train with an increasing number of cases, they soon will develop an unparalleled
surgical knowledge—a collective surgical consciousness—that will help any sur-
geon, anywhere, to deliver optimal intraoperative care to their patients [3].

There are, however, key advances that must be made. An important, early
advance in the process of translating CV to the operating room is the estab-
lishment of clear labels for operative videos. Hashimoto and colleagues [34]
(2019) demonstrated that surgeons, even within the same institution, can
differ in their conceptualization of the boundaries of the steps of an operation.
That is, when does 1 step of an operation end and the next begin? As
described previously, for supervised learning, defining a gold standard or
ground truth is important to be able to train a model to recognize aspects
of surgical video [38]. Efforts currently are under way through the Society
of American Gastrointestinal and Endoscopic Surgeons to convene an inter-
national consensus on guidelines for annotating operative video for the pur-
poses of ML and GV research.
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Electronic Health Records

Electronic medical records (EMRs) largely have benefited from some applica-
tions of Al, especially through NLP and other ML algorithms for risk calcula-
tion and resource management, as described in this article. Another potential
great application of extracting data from EMR through Al techniques is the
integration of the preoperative knowledge with the intraoperative events and
postoperative outcomes of each individual. Furthermore, analyzing and linking
each individual surgeon’s intraoperative decisions and conducts and their post-
operative data with populational data from several other surgeons would allow
the machine to make inferences, predictions, and recommendations based on a
collective knowledge and exponentially enhance cognitive capabilities by
providing experience that would have taken several years to decades to achieve
and then apply to all and each individual patients.

REGULATORY AND LEGAL CONSIDERATIONS

Like in any other industry, Al eventually will permeate almost all aspects of the
surgical practice, and several regulatory bodies will be dictating how hospitals
and surgeons can utilize this type of technology. And because surgical Al is still
nascent, it is difficult to predict the unique future rules and regulations
regarding its utilization, but it can be anticipated that they will be exercised
at different levels, such as federal and state medical boards and individual hos-
pitals and societies.

Legal considerations also likely will play a major role in surgical Al, because
large amounts of data acquisition, especially video data, are paramount for the
scalability and sustainability of the use of Al in surgery; therefore, broad
policies governing data acquisition, storage, sharing, and utilization should
be designed and agreed by surgeons, lawmakers, ethicists, privacy officers, en-
gineers, payers, insurers, and patients.

SURGEON'’S ROLE

It is unequivocal that this transformation will occur, and it will be driven by
many forces, including financial, regulatory, media, and societal; and surgeons
need to be prepared not only to embrace it but also to be instrumental from its
inception to implementation. It is the surgeon’s responsibility to understand,
embrace, and advocate for the necessary changes in this field for this transfor-
mation to occur in an orderly and controlled manner, allowing interoperability,
scalability, and sustainability for the years to come.

Surgeons should work closely with engineers and data scientists to develop
the technologies at the very early stages and work with academic societies,
medical boards, and hospital administration to assess and safely implement
the nascent technology in a comprehensive and thoughtful fashion.

Furthermore, surgeons also have an important leadership role to educate
other health care providers, hospital staff, industry, patients, medical students,
population, and lawmakers on the benefits and potential pitfalls of this type of
technology.
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SUMMARY

In summary, Al as applied to surgery is early in its development. Although sig-
nificant advances are being made in Al, these advances are focused on narrow
applications of the technology to specific problems within surgery. The field is
very much in a phase of discovery and development, and a critical appraisal of
new publications, software, and devices is necessary to appropriately evaluate
its impact on patient care and surgeon workflow. As with any new technology,
a healthy measure of skepticism is necessary to guard against hype; however,
data on potential applications of Al to surgery thus far have been promising.
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